March 22, 2023

Convolutional Neural Network (CNN)

image-20230319164917679

image-20230319165059549

1 Simplification 1

Observation

image-20230322200950874

Simplification

image-20230322201646461

Typical Setting

image-20230322202457980

2 Simplification 2

Observation

image-20230322205832287

Simplification

image-20230322210005981

Two neurons with the same receptive field would not share parameters.

image-20230323093341152

3 Benefit of Convolutional Layer

image-20230323093535628

4 Another Story

image-20230323094048401

Multiple Convolutional Layers

The channel of next filters is the last filters number of convolution

image-20230323094941368

Although the filter is 3 \times 3 on the second filter, but it consider 5 \times 5 area on the ordinary picture.

image-20230323095338843

5 Convolutional Layer

image-20230323095542834

6 Pooling -Max Pooling

image-20230323095810366

Convolutional Layers + Pooling

image-20230323095928760

7 The Whole CNN

image-20230323100010610

8 To Learn More

Data Augmentation: Flip, scale, crop, rotation

Spatial Transformer Layer to improve this problem.

image-20230323101213715

# ML